Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher volkan.cevher@epfl.ch

Supplementary Material: Asymptotics

Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2024)

License Information for Mathematics of Data Slides

▶ This work is released under a <u>Creative Commons License</u> with the following terms:

Attribution

► The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.

Non-Commercial

► The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes — unless they get the licensor's permission.

Share Alike

► The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work

▶ Full Text of the License

Asymptotic Notation

What is this notation?

- ▶ Asymptotic Notation (Big-Oh Notation, Landau's notation) describes asymptotic growth of functions.
- It is usually used to describe:
 - Running time of an algorithm
 - Memory storage require by an algorithm
 - Error achieved by an approximation
- Exact computation of the running time, memory, or error is usually not important: For large inputs, multiplicative constants and lower-order terms "do not matter."

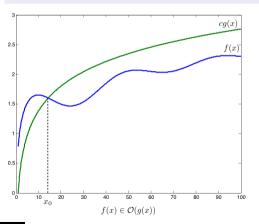
- ▶ Binary search's running time in a sorted list of n elements. [1]: $O(\log(n))$
- Number of comparisons required for sorting a list of n elements [1]: $\Omega(n \log(n))$

Asymptotic Notation: Big-Oh

Definition (Big-Oh)

Let f,g be two functions defined on some subset of the real numbers:

$$f(x) \in O(g(x))$$
 iff $\exists c > 0, \exists x_0, \text{ such that } |f(x)| \le c|g(x)|, \forall x \ge x_0$



In computer science, the definition is taken over positive integers.

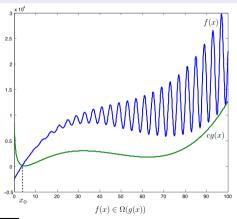
- $ightharpoonup x \in O(x^2)$
- $\log(n!) \in O(n\log(n))$
- $n^{1+\sin(n)} \in O(n^2)$

Asymptotic Notation: Big-Omega

Definition (Big-Omega)

Let f, g be two functions defined on some subset of the real numbers:

$$f(x) \in \Omega(g(x))$$
 iff $\exists c>0, \exists x_0, \text{such that } |f(x)| \geq c|g(x)|, \forall x \geq x_0$



- ▶ Intuition: *g* is a lower bound of *f* iff *f* is an upper bound of *g*.
- $f(x) \in \Omega(g(x)) \Leftrightarrow g(x) \in O(f(x)).$

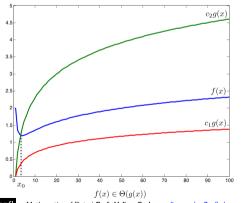
- $x^2 \in \Omega(x)$
- $\blacktriangleright \ \log(n!) \in \Omega(n \log(n))$
- $n^{1+\sin(n)} \in \Omega(1)$

Asymptotic Notation: Theta

Definition (Theta)

Let f, g be two functions defined on some subset of the real numbers:

$$f(x) \in \Theta(g(x))$$
 iff $\exists c_1, c_2 > 0, \exists x_0, \text{ such that } c_1 \leq \frac{|f(x)|}{|g(x)|} \leq c_2, \forall x \geq x_0$



- ▶ Intuition: g is a tight bound for f iff it is both an upper and a lower bound of it.
- $\qquad \qquad f(x) \in \Theta(g(x)) \text{ iff } f(x) \in O(g(x)) \text{ and } f(x) \in \Omega(g(x)).$
- $f(x) \in \Theta(g(x))$ iff $g(x) \in \Theta(f(x))$.

- $ightharpoonup \sin(x) \in \Theta(1)$
- $rac{}{} x + \log(x) \in \Theta(x)$
- ► Stirling's approximation: $n! \in \sqrt{2\pi n} (\frac{n}{e})^n (1 + \Theta(\frac{1}{n}))$

Asymptotic Notation: small-oh and small-omega

Definition (small-oh, small-omega)

Let f,g be two functions defined on some subset of the real numbers:

$$f(x) \in o(g(x))$$
 iff $\forall c > 0, \exists x_0, \text{ such that } |f(x)| \le c|g(x)|, \forall x \ge x_0,$

or equivalently $\lim_{x\to\infty} \frac{|f(x)|}{|g(x)|} = 0$.

$$f(x) \in \omega(g(x))$$
 iff $\forall c > 0, \exists x_0, \text{ such that } |f(x)| \ge c|g(x)|, \forall x \ge x_0,$

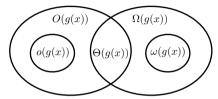
or equivalently $\lim_{x\to\infty} \frac{|f(x)|}{|g(x)|} = \infty$.

- ► These are non-tight upper/lower bounds.
- $ightharpoonup g(x) \in o(f(x))$: g is dominated by f asymptotically.
- $f(x) \in \omega(g(x))$: f dominates g asymptotically.
- $f(x) \in \omega(g(x)) \Leftrightarrow g(x) \in o(f(x)).$

- ▶ $\frac{1}{\pi}$ ∈ o(1)
- \blacktriangleright $5 \in \omega(\frac{1}{x})$
- $ightharpoonup n! \in o(n^n)$
- ${\color{red} \blacktriangleright} \ n! \in \omega(2^n)$

Hierarchy of asymptotic notation classes

▶ Relation between the different asymptotic notations:



Analogy with real numbers comparison:

Aymptotic function comparison	Real numbers comparison
f(x) = O(g(x))	$a \leq b$
$f(x) = \Omega(g(x))$	$a \ge b$
$f(x) = \Theta(g(x))$	a = b
f(x) = o(g(x))	a < b
$f(x) = \omega(g(x))$	a > b

▶ Difference from real numbers comparison: Not all functions are **asymptotically comparable**, e.g., n, $n^{1+\sin(n)}$.

Asymptotic Notation: some remarks

Some notation abuse:

▶ Use of equality: f(x) = O(g(x))

Some variations:

- ▶ Soft-Oh: $\tilde{O}(\cdot)$ notation ignores log terms, i.e., $O(x^c \log^k(x)) = \tilde{O}(x^c)$.
- Asymptotic notation can also describe limiting behavior as $x \to a$, e.g., $e^x = 1 + x + \frac{x^2}{2} + o(x^2), x \to 0$ (by Taylor's theorem).

References |

 T. Cormen, C. Leiserson, R. Rivest, C. Stein, et al. *Introduction to algorithms*, volume 2.
MIT press Cambridge, 2001.
(Cited on page 3.)